Cutting Convex Polyhedra by Planes

Alexander Ravsky and Oleg Verbitsky

19 February 2016
Polyhedral graphs

Steinitz’s theorem says that a graph G is isomorphic to the 1-skeleton of a three-dimensional convex polyhedron if and only if G is planar and 3-connected. By this reason 3-connected planar graphs are called polyhedral.
Cutting planar graphs by lines

Let π be a drawing of a graph G and ℓ be a line. We say that ℓ crosses an edge or a face of π if ℓ intersects it at an inner point.

Denote the number of edges (resp. faces) of π that ℓ crosses by $\bar{e}(\pi, \ell)$ (resp. $\bar{f}(\pi, \ell)$).

\[
\bar{e}(G) = \max_{\pi, \ell} \bar{e}(G, \pi)
\]

\[
\bar{f}(G) = \max_{\pi, \ell} \bar{f}(G, \pi)
\]

Denote the number of vertices of π on ℓ by $\bar{v}(\pi, \ell)$.

\[
\bar{v}(G) = \max_{\pi, \ell} \bar{v}(\pi, \ell)
\]
Example

$$\bar{v}(\pi, \ell) = 1 \quad \bar{e}(\pi, \ell) = 2, \quad \bar{f}(\pi, \ell) = 3.$$
Some Theorems

For every triangulation T, $\bar{v}(T) \leq \bar{f}(T) = \bar{e}(T) \leq c(T^*)$.

(The circumference $c(G)$ of a graph G is the length of a longest cycle in G and G^* is the dual of a polyhedral graph G).

If G be a planar graph such that degree of each vertex of G is at least k then $\bar{e}(G) \geq (k/2 - 1)\bar{v}(G)$. In particular, $\bar{e}(G) \geq (1/2)\bar{v}(G)$ for each polyhedral graph G.
Cutting convex polyhedra by planes

Let G be a polyhedral graph, π be a convex polyhedron whose 1-skeleton is isomorphic to G, and ℓ be a plane. Values $\overline{e}(G)$, $\overline{f}(G)$, and $\overline{v}(G)$ are defined similarly to $\overline{\bar{e}}(G)$, $\overline{\bar{f}}(G)$, and $\overline{\bar{v}}(G)$ from the preceding section.
Cutting convex polyhedra by planes

Let G be a polyhedral graph, π be a convex polyhedron whose 1-skeleton is isomorphic to G, and ℓ be a plane. Values $\bar{e} (G)$, $\bar{f} (G)$, and $\bar{v} (G)$ are defined similarly to $\bar{e}(G)$, $\bar{f}(G)$, and $\bar{v}(G)$ from the preceding section.

$$\bar{v} (\pi, \ell) = 2, \quad \bar{e} (\pi, \ell) = 3, \quad \bar{f} (\pi, \ell) = 3.$$
For every polyhedral graph G, $\bar{v}(G) \leq \bar{f}(G) = \bar{e}(G) \leq c(G^*)$.

The last inequality was used by Grünbaum to show that for some G we have $\bar{e}(G) = O(n^\alpha)$ for some $\alpha < 1$.

If G be a planar graph such that degree of each vertex of G is at least k then $\bar{e}(G) \geq (k/2 - 1) \bar{v}(G)$.
Relations between 2-d and 3-d cases

For every polyhedral graph G, $\bar{f}(G) \leq \bar{f}(G)$.
Relations between 2-d and 3-d cases

For every polyhedral graph G, $\bar{f}(G) \leq \bar{f}(G)$. Is $\bar{f}(G) = \bar{f}(G)$?
Relations between 2-d and 3-d cases

For every polyhedral graph G, $\bar{f}(G) \leq \bar{f}(G)$.

Is $f(G) = \bar{f}(G)$?

Is there any relation between $\bar{v}(G)$ and $\bar{v}(G)$?
Relations between 2-d and 3-d cases

For every polyhedral graph G, $\bar{f}(G) \leq \bar{f}(G)$.

Is $\bar{f}(G) = \bar{f}(G)$?

Is there any relation between $\bar{v}(G)$ and $\bar{v}(G)$?

Is there any relation between $\bar{f}(G)$ and $\bar{v}(G^*)$?
Relations between 2-d and 3-d cases

For every polyhedral graph G, $\bar{f}(G) \leq \bar{f}(G)$.

Is $\bar{f}(G) = \bar{f}(G)$?

Is there any relation between $\bar{v}(G)$ and $\bar{v}(G)$?

Is there any relation between $\bar{f}(G)$ and $\bar{v}(G^*)$?

There are polyhedral graphs G on n vertices with $\bar{v}(G) > (2/3)n - 2$ and $c(G) = O(n^{\log_3 2})$.
Polyhedra with small planar sets of vertices

The shortness exponent of a class of graphs \mathcal{G} is the limit inferior of quotients $\log c(G)/\log v(G)$ over all $G \in \mathcal{G}$. Let σ denote the shortness exponent for the class of cubic polyhedral graphs. It is known that

$$0.753 < \sigma \leq \frac{\log 22}{\log 23} = 0.985\ldots$$
Polyhedra with small planar sets of vertices

The *shortness exponent* of a class of graphs \(\mathcal{G} \) is the limit inferior of quotients \(\log c(G)/\log \nu(G) \) over all \(G \in \mathcal{G} \). Let \(\sigma \) denote the shortness exponent for the class of cubic polyhedral graphs. It is known that

\[
0.753 < \sigma \leq \frac{\log 22}{\log 23} = 0.985 \ldots
\]

For each \(\alpha > \sigma \) there is a sequence of triangulations \(G \) with \(\bar{\nu}(G) = O(n^\alpha) \).
The *shortness exponent* of a class of graphs \mathcal{G} is the limit inferior of quotients $\log c(G)/\log v(G)$ over all $G \in \mathcal{G}$. Let σ denote the shortness exponent for the class of cubic polyhedral graphs. It is known that

$$0.753 < \sigma \leq \frac{\log 22}{\log 23} = 0.985 \ldots$$

For each $\alpha > \sigma$ there is a sequence of triangulations G with $\bar{v}(G) = O(n^\alpha)$.

For each $\alpha > \sigma$ there is a sequence of triangulations G with $\bar{v}(G) = O(n^\alpha)$.
Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.
Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.
Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.

$$\overline{v}(G) \geq n/\pi(G)$$
Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.

$$\bar{v}(G) \geq \frac{n}{\pi(G)}$$

$$\pi(G) \leq \chi(G)$$
Drawing graphs on several planes

Finally, we consider straight line drawings of arbitrary graphs in 3-dimensional space.

Let $\pi(G)$ denote the minimum number of planes in the space such that a graph G can be drawn with vertices lying on these planes.

$$\bar{v}(G) \geq \frac{n}{\pi(G)}$$

$$\pi(G) \leq \chi(G)$$

Proof. Let $V(G) = \{v_1, \ldots, v_n\}$, $\chi : V(G) \to \{1, \ldots, \chi(G)\}$ be a coloring of G, and x_1, \ldots, x_n be real numbers which are linearly independent over the field \mathbb{Q}. Then $d(v_i) = (x_i, \chi(v_i))$ is the required drawing.
Drawing graphs on several planes

$\pi(G)$ is equal to the smallest size r of a partition $V(G) = V_1 \cup \ldots \cup V_r$ such that every V_i induces a planar subgraph of G. Therefore,

$$\frac{1}{4} \chi(G) \leq \pi(G) \leq \chi(G)$$
Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).
Drawing graphs on several planes

Let \(\rho(G) \) denote the minimum number of planes in the space such that a graph \(G \) can be drawn on these planes (that is, every edge lies on one of the planes).

\[
\bar{e} (G) \geq \frac{m}{\rho(G)}
\]
Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).

$$\bar{e}(G) \geq m/\rho(G)$$

$\rho(G)$ is bounded from below by the smallest size r of a partition $E(G) = E_1 \cup \ldots \cup E_r$ such that every subgraph E_i is planar.
Drawing graphs on several planes

Let \(\rho(G) \) denote the minimum number of planes in the space such that a graph \(G \) can be drawn on these planes (that is, every edge lies on one of the planes).

\[
\bar{e}(G) \geq m/\rho(G)
\]

\(\rho(G) \) is bounded from below by the smallest size \(r \) of a partition \(E(G) = E_1 \cup \ldots \cup E_r \) such that every subgraph \(E_i \) is planar.

Relate \(\rho(G) \) to something, say, to the edge-chromatic number, to the genus of \(G \) etc.
Drawing graphs on several planes

Let $\rho(G)$ denote the minimum number of planes in the space such that a graph G can be drawn on these planes (that is, every edge lies on one of the planes).

$$\bar{e}(G) \geq m/\rho(G)$$

$\rho(G)$ is bounded from below by the smallest size r of a partition $E(G) = E_1 \cup \ldots \cup E_r$ such that every subgraph E_i is planar.

Relate $\rho(G)$ to something, say, to the edge-chromatic number, to the genus of G etc.

Compute $\rho(K_n)$.